Video worksheet - weak and strong acids and bases

1. Urea $(NH_2)_2CO$) is a very weak base produced in the body during the breakdown of proteins. It is excreted from the body by the kidneys. Calculate the [OH] of an 0.10 M urea solution, given that under these conditions, only 1.00 X 10^{-5} % of the urea molecules react according to the reaction below.

$$(NH_2)_2CO(aq) + H_2O(I) \rightleftharpoons (NH_2)(NH_3^+)CO(aq) + OH^-(aq)$$

2. Calculate the [OH] of a 2.50 M Ba(OH) $_2$

3. The sulfate ion (SO_4^{2-}) is a very weak base used as a fertiliser. A mass 28.4 g of sodium sulfate $(Na_2SO_4 \text{ molar mass } 142 \text{ g/mol})$ fully dissociates in 1.00 litre of water. The sulfate ion reacts with water according to the equation below. Under certain conditions only 0.0055 % of the sulfate ions present will react with water. Find the $[OH^-]$

$$SO_4^{2}$$
 (aq) +H₂O (I) \rightleftharpoons HSO₄ (aq) +OH⁻(aq)

4. A 1.7135 gram pure sample of the highly soluble barium hydroxide (Ba(OH) $_{_2}$), molar mass
171g/mol, is dissolved in 200 mL of distilled water. The compound dissociates completely
according to the equation below. Find the [OH] expressed to the right number of significant
figures.

$$Ba(OH)_{2}(s) \rightarrow Ba^{2+}aq) + 2OH^{-}(aq)$$

5. A 1.25 g sample of $Ca(OH)_2$ (molar mass = 74 g/mol) is dissolved in 250 mL water. Calculate the $[OH^-]$ to right number of significant figures?

6. Calculate the $[H_3O^+]$ of a 1.25M HCl solution? Explain your reasoning.

7. What is the $[H_3O^+]$ of a 1.200M HF solution, assuming 0.11% of HF molecules ionise under these conditions.

8.	A 200 mL of a 0.100 M hydrocyanic acid (HCN) is tested and found to have a $[H_3O^+]$ of 1.00 X
	10 ⁻⁷ M. The reaction is shown above.

$$HCN(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$$

Calculate the percent ionization of hydrocyanic acid under these conditions and classify it as a strong (99-100%), moderately strong (10-50%), weak (1-5%) or extremely weak (<<<0.100%).

9. The acid concentration and $[H_3O^+]$ of four solutions containing halide acids (HF, HCl, HBr and HI) are given below.

Given that all measurements were taken under the same conditions, identify each solution.

Solution	[acid]	[H₃O⁺]
Α	1.00	1.0 X 10 ⁻⁴
В	0.100	1.0 X 10 ⁻¹
С	1.00	0.99
D	0.100	0.088